当前所在位置: 高起点 > 学科 > 正文

平行四边形的周长公式是什么

2023-07-25 10:16:19 高起点

  平行四边形的周长公式:C=2(a+b)。公式描述:公式中a、b分别为平行四边形的边长,C为平行四边形的周长。

  定义

  两组对边分别平行的四边形叫做平行四边形。

  1、平行四边形属于平面图形。

  2、平行四边形属于四边形。

  3、平行四边形属于中心对称图形。

  性质

  (矩形、菱形、正方形都是特殊的平行四边形。)

  (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

  (简述为“平行四边形的两组对边分别相等”)

  (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

  (简述为“平行四边形的两组对角分别相等”)

  (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

  (简述为“平行四边形的邻角互补”)

  (4)夹在两条平行线间的平行四边形的高相等。(简述为“平行线间的高距离处处相等”)

  (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

  (简述为“平行四边形的对角线互相平分”)

  (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

  (7)平行四边形的面积等于底和高的积。(可视为矩形。)

  (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

  (9)平行四边形是中心对称图形,对称中心是两对角线的交点.

  (10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

  (11)平行四边形ABCD中E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

  (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

  (13)平行四边形对角线把平行四边形面积分成四等份。

  (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

  (15)平行四边形的面积等于相邻两边与其夹角正弦的乘积

  其他性质

  平行四边形的对边是平行的(根据定义),因此永远不会相交。

  平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。

  平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。

  任何通过平行四边形中点的线将该区域平分。

  任何非简并仿射变换都采用平行四边形的平行四边形。

  平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。如果它有四行反射对称,它是一个正方形。

  平行四边形的周长为2(a+b),其中a和b为相邻边的长度。

  与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。

  在平行四边形的内侧或外部构造的四个正方形的中心是正方形的顶点。

  如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等[7]

  平行四边形的对角线将其分成四个相等面积的三角形。

  判定

  1、两组对边分别平行的四边形是平行四边形(定义判定法);

  2、一组对边平行且相等的四边形是平行四边形;

  3、两组对边分别相等的四边形是平行四边形;

  4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);

  5、对角线互相平分的四边形是平行四边形。

  补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。

  相关计算

  1、(1)平行四边形的面积公式:底×高(可运用割补法,推导方法如图1);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。

  (2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。

  2、平行四边形周长:四边之和。可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)。

阅读全文
相关推荐

边字怎么读,边的解释

边字怎么读,边的解释
边字有两个读音,分别是biān bian,在古代,边疆是国家安全的重要防线,也是文化交流与碰撞的前沿地带。如今,边字依然活跃在我们的日常生活中,无论是描述地理位置的边界,还是表达动作的同时进行,都体现了其强大的生命力和广泛的应用价值。

韦达定理公式变形6个 什么是韦达定理

韦达定理公式变形6个 什么是韦达定理
  韦达定理是代数学中的一项重要内容,它描述了多项式的根与系数之间的关系。韦达定理公式变形:x1²+x2²=(x1+x2)²-2x1x2,1/x1²+1/x2²=(x1²+x2²)/x1x2,x1³+x2³=(x1+x2)(x1²-x1x2+x2²)等。

函数的性质

函数的性质
函数的性质是一个广泛而深入的概念,它描述了函数在不同方面的特性和行为。

圆周率是谁发明的是哪个朝代的

圆周率是谁发明的是哪个朝代的
圆周率作为数学中的一个重要常数,其研究和计算跨越了多个朝代和无数数学家的努力。它的研究贯穿了不同的朝代,从古希腊的阿基米德到中国古代的刘徽和祖冲之,再到现代的计算机计算,圆周率的研究不断推动着数学的发展。

分式的定义和有意义的条件

分式的定义和有意义的条件
  分式,是一种基本的几何或代数表达形式,用于表示整体与部分的关系。在数学中,分式具有广泛的应用,从简单的分数运算到复杂的代数方程,都是分式的表现形式。下面,小编你将为您介绍分式的定义及其有意义的条件。

圆的周长公式是什么

圆的周长公式是什么
圆的周长公式为C(周长)=2πr(半径)或者C=πd(直径)。因此圆的半径r=C/2π。其中π是圆周率,有固定的数值,一般取值π=3.14。圆周长是指绕圆一周的长度,在圆中内接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象。

什么是单数什么是双数

什么是单数什么是双数
  在数学学习中,单数和双数是两个基础且重要的概念。无论是在小学数学的启蒙阶段,还是在更高级的数学研究中,单数和双数的性质和应用都无处不在。那么,什么是单数什么是双数呢?下面,将为大家详细解答!

高一高二高三数学分别学什么

高一高二高三数学分别学什么
  高中数学是高中阶段的重要学科,其内容丰富且具有较强的逻辑性和系统性。高中数学的学习通常分为三个阶段:高一、高二和高三,每个阶段都有特定的学习内容和重点。下面,将为大家详细介绍高一、高二、高三数学的学习内容。

什么是数量矩阵

什么是数量矩阵
数量矩阵,指的是设I是单位矩阵,k是任何数,则k*I称为数量矩阵。换句话说,数量矩阵就是对角线上元素都是同一个数值,其余元素都是零。数量矩阵有且只有一个n重特征值。数量矩阵广泛应用于线性代数、数值计算、图像处理等领域,是现代科学技术中不可或缺的一部分。

伴随矩阵怎么求 有什么方法

伴随矩阵怎么求 有什么方法
  在线性代数中,一个方阵的伴随矩阵是一个与逆矩阵类似的概念。如果矩阵可逆,那么它的逆矩阵与其伴随矩阵之间只差一个系数。值得注意的是,即使对于不可逆的矩阵,伴随矩阵也有定义,并且其计算过程中不需要使用除法。那么,如何求得一个矩阵的伴随矩阵呢?有哪些方法?
友情链接