当前所在位置: 高起点 > 学科 > 正文

高中数学解题常用的几种解题思路和技巧

2025-04-21 09:35:46 高起点

  数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。下面,是小编为大家整理的高中数学解题常用的几种解题思路和技巧,仅供大家参考。

  高中数学解题有效方法

  一、数形结合法

  高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

  数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

  这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

  根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

  二、排除解题法

  排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

  排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。例如,题目为“z的共轭复数为z,复数z=1+i,求zz-z-1的值。选项A为-2i、选项B为i、选项C为-i、选项D为2i。”

  当我们在解决这个题目时,不仅要对题目已知条件进行合理分析,而且还要对选项进行合理考虑,并根据它们之间的联系进行有效论证。我们可以采取排除法来解决这个问题,已知z=1+i,所以我们可以求出z的共轭复数,由于题目中含有负号,所以我们可以排除B项和D项;然后我们可以将z的共轭复数带进表达式,可得zz-z-1=(1+i)(1-i)-1-i-1=-i,所以我们可以将A项排除,最终选择C项。

  三、方程解题法

  很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

  数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。例如,题目为“双曲线C的离心率是2,其焦点主要为F1和F2,双曲线C上有一点A,如果|F1A|=2|F2A|,求cos∠AF2F1的值。”

  这个问题中存在着较抽象的数量关系,如果直接利用已知条件求cos∠AF2F1的值,不仅会增加我们的解题步骤,而且很容易出现错误,所以我们可以利用方程解题法来解决这个问题。首先,由已知条件双曲线C的离心率是2可得出C=2a;然后可根据双曲线上点A建立表达式,2a=|F1A|-|F2A|,所以可计算出|F1A|=4a,|F2A|=2a,|F1F2|=2c;最后我们可以通过余弦定理建立方程式,所以最后我们可以得出cos∠AF2F1的值为。

  高中数学解题小技巧

  1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

  2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

  3、三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

  4、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

  5、立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

  6、选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的

  7、选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案

  8、线性规划题目直接求交点带入比较大小即可

  9、遇到这样的选项A.1/2,B.1,C.3/2,D.5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2)

阅读全文
相关推荐

怎样学好数学

怎样学好数学
  数学作为一门基础学科,不仅是科学研究的重要工具,也是培养逻辑思维和解决问题能力的关键途径。无论是学生还是成人,掌握好数学知识都对个人发展有着深远的影响。而对许多人来说,学习数学可能是一项挑战。那么,怎样学好数学呢?下面,一起来看看吧!

高中数学怎么才能开窍 如何学好数学

高中数学怎么才能开窍 如何学好数学
  数学开窍就意味着掌握数学思想,提到思想这件事就要突出基础知识的理解和基础知识的应用,有很多时候不是你差,而是你根本就不知道,也没人教你用过,把之前的基础补好打扎实应该离开窍不远了,当然这个基础不仅仅是基础的概念。

高中三角函数公式有哪些必背公式是哪个

高中三角函数公式有哪些必背公式是哪个
高中三角函数公式众多,同角三角函数基本关系是三角函数中最基本的公式之一,它在解决三角函数问题时起到了基础性的作用。掌握了基本关系式、和差公式、倍角公式等三角函数值等关键公式,就能够解决大部分三角函数问题。

高中数学怎么才能学好 有哪些学习方法

高中数学怎么才能学好 有哪些学习方法
  想要学好数学,要做到学习资料保存好,既要作好分类工作,还要好记号。学习资料的分类包括练习题、试卷、实验报告等等。所谓作记号,比方说对习题而言,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。

学奥数的利与弊 孩子该不该学奥数

学奥数的利与弊 孩子该不该学奥数
  在我国的一些省市中,奥数与小学升初中是有很大的关联的。如果想要读一所比较好的学校,那么奥数的成绩就显得很重要了。但是很多人认为奥数对孩子来说是一种压力,那么学奥数到底有哪些利弊呢?下面就和小编一起来看看吧!

韦达定理公式变形6个 什么是韦达定理

韦达定理公式变形6个 什么是韦达定理
  韦达定理是代数学中的一项重要内容,它描述了多项式的根与系数之间的关系。韦达定理公式变形:x1²+x2²=(x1+x2)²-2x1x2,1/x1²+1/x2²=(x1²+x2²)/x1x2,x1³+x2³=(x1+x2)(x1²-x1x2+x2²)等。

初中数学差有什么推荐的书吗 哪些比较有帮助

初中数学差有什么推荐的书吗 哪些比较有帮助
  初中数学差比较有帮助的书有5年中考3年模拟、蝶变中考-数学、一本涂书、中学课本详解等,初中生数学差需要一些资料书的辅助,同时也需要好的学习方法。

平行四边形的周长公式是什么

平行四边形的周长公式是什么
平行四边形的周长公式:C=2(a+b)。公式描述:公式中a、b分别为平行四边形的边长,C为平行四边形的周长。

高一数学怎么学

高一数学怎么学
  高中数学与初中数学存在显著差异。数学语言在抽象程度上发生突变。初中数学主要以形象、通俗的语言方式进行表达,而高一数学触及抽象的集合语言、逻辑运算语言以及函数语言、空间立体几何等,不少学生反映集合、映射等概念难以理解,觉得离生活很远。

二元一次方程的公式是什么

二元一次方程的公式是什么
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
友情链接